Area Members: Rishabh Goel, Sheraz Hassan
BodyBeat is a novel mobile sensing system for capturing and recognizing a diverse range of non-speech body sounds in real-life scenarios. Non-speech body sounds, such as sounds of food intake, breath, laughter, and cough contain invaluable information about our dietary behavior, respiratory physiology, and affect. The BodyBeat mobile sensing system consists of a custom-built piezoelectric microphone and a distributed computational framework that utilizes an ARM microcontroller and an Android smartphone. The custom-built microphone is designed to capture subtle body vibrations directly from the body surface without being perturbed by external sounds. The microphone is attached to a 3D printed neckpiece with a suspension mechanism. The ARM embedded system and the Android smartphone process the acoustic signal from the microphone and identify non-speech body sounds. We have extensively evaluated the BodyBeat mobile sensing system. Our results show that BodyBeat outperforms other existing solutions in capturing and recognizing different types of important non-speech body sounds.
DoppleSleep is a contactless sleep sensing system that continuously and unobtrusively tracks sleep quality using commercial off-the-shelf radar modules. DoppleSleep provides a single sensor solution to track sleep- related physical and physiological variables including coarse body movements and subtle and fine-grained chest, heart movements due to breathing and heartbeat. By integrating vital signals and body movement sensing, DoppleSleep achieves 89.6% recall with Sleep vs. Wake classification and 80.2% recall with REM vs. Non-REM classification compared to EEG-based sleep sensing. Lastly, it provides several objective sleep quality measurements including sleep onset latency, number of awakenings, and sleep efficiency. The contactless nature of DoppleSleep obviates the need to instrument the user’s body with sensors. Lastly, DoppleSleep is implemented on an ARM microcontroller and a smartphone application that are benchmarked in terms of power and resource usage.
Photoacoustic effect is a fundamental physics concept which is essentially the generation of sound due to the absorption of intensity modulated light or more generally EM waves by a certain material. We took this fundamental physics concept to build a mobile sensing system that can characterize the quality or nutritional characteristics of liquid food. The long-term vision of this work is to democratize food characterization using such a low cost, easy to use, mobile system which could enable consumers to test food before purchase and to put an indirect pressure on the food industry and government regulators to ensure quality.